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\\\ SUMMARY

\EiThe stability of numerical schemes for solving algebraic finite-difference

equations resulting from finite-difference approximations to differential equa-

tions is discussed. It is suggested that the von Neumann method together with

its stability criterion provides a reasonably simple way of determining stabilitiy.

However, there are limitations in its applicability, some of which are indicated.

The method is tested in two examples and an indication is given of how best to

treat first~ and mixed-derivative terms occurring in differential equations. _
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1 INTRODUCTION

The mathematical modelling of practical problems often involves the use of

differential equations. Very few of these equations can be solved analytically, and hence
it is of great importance to develop satisfactory schemes for solving them numerically.,
One requirement of any satisfactory numerical scheme is that it should be stable. How-

ever there are several definitions of stability in the literature, all leading to differ-

e o WA Habiab: 1 bt

ent stability criteria. The purpose of this Report is to discuss some of these defini-

tions and criteria, with the aid of examples. The examples will also suggest how best to

etul iy B

treat first-and mixed-derivative terms when they arise in differential equations.

There are two basic stepsr in the usual finite-difference methods of obtaining
approximate numerical solutions to differential equations. First a finite-difference
approximation to the differential equation must be chosen, the result of this being a
set of equations, termed the finite-difference equations. The second step is to solve
these equations, thus obtaining an approximation to the solution of the original

differential equation,

b bbb i st Al el kobd g B i

Associated with these two steps are four concepts: consistency, convergence,

convergence of an iterative scheme, and stability. These will be explained:

Consistency If the finite-difference formulation is equal to the original differential

equation plus terms which tend to zero as the grid size tends to zero, then the finite-

o kil RSN

difference approximation is consistent.

wtisdi] dvh

Convergence When the finite-difference approximation is convergent, the difference

batween the discrete approximation (the solution of the finite-difference equations) and

A the true solution (the solution of the differential equation) can be made as small as

desired, by choosing a suffi~ientiy small grid.

p

Convergence cof an iterative scheme If the finite-difference equations are solved by an

iterative scheme, this scheme is convergent if and only if the sequence of approximations
(the (n + 1)th of which is obtained from the nth by the iterative scheme) converges to

the solution of the finite-difference equations. The zeroth approximation, or initial

guess, must be supplied.

Stability There seems to be much disagreement over the definition of this term. Some
authors merely require that all errors should eventually be damped out]. Others appear e

to relate stability to the growth of rounding etrorsz’3. .

For initial-value problems Richtmyer and Morton] give several definitions of
stability., These do not mention errors, as they are given in terms of the operators by
which the solution at time ¢t + At may be obtained from the solution at time t , where
"time' is the coordinate in the marching direction, and At the time step taken. These

'operator' definitions can be extende. to iterative schemes for solving sete of equations

i
i
[N

arising from flaite-difference approximations to elliptic partial differential equations,

if the time-dependent analogy of Jameson (see for instance, Ref 4) is used. In this
n

081

analogy an artificial time coordinate, t , with step length At , in introduced, and ¢
the approximation to the solution after the nth step, is regarded as the solution at time

t = nAt .
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The last two ideas depend only on the finite-difference equations and the manner in
which they are solved, no reference being made to the original differential equation.

They ensure that the solution of the finite-difference equations can be obtained.

There are many theorems which show that convergence (and convergence of the
iterative scheme if appropriate) will be obtained for various classes of differential
equations with fairly general initial and boundary conditions, if the finite-difference
equations are consistent and the scheme adopted for their solution is stable in a suitable
sense (see, for instance, Ref 1), However, for nonlinear second-order partial differen-
tial equations there are no such results except in a few special cases. Nevertheless
for such equations it is widely accepted (and will be assumed here from now on) that
stability (in some suitable sense) and consistency do imply convergence (and convergence
of the iterative scheme if appropriate).

It is usually straightforward to show consistency - in practice this is done in the
formulation of the finite-difference approximation.” In section 2 the discussion on
stability will be continued and it is suggested that the von Neumann criterion is a
reasonably simple one which is adequate in many cases. Attention is also drawn to some
of its limitations, In section 3 some of the ideas introduced in section 2 will be
illustrated with spacific examples, and it is shown how first- and mixed-derivative
terms might best b: treated.

2 STABILITY OF ITERATIVE SCHEMES

For many types of differential equations (for example, wnen the coefficients of
the highest derivative terms are functions of the solution) there are no rigorous theories
concerning the stability of numerical schemes for their solution., The usual approach is
to do a local stability analysis, and to hope that if the scheme is everywhere locally
stable it will be globally stable. Although this is not always true, practical experience
suggests the corresponderce is close, probably because instabilities usually arise
10callyl.

There are two methods commonly used for examining the notion of stability of a
finite~difference schemea. The first one, termed the von Neumann method, will be
examined in section 2.1. The second one, termed the matrix method, will be discussed in

section 2.4

2.1 The von Neumann stability method

The differential equation is taken to have constant coefficients, and the problem
is assumed to be an initial value one, the only permitted boundary conditions being ones
which can be replaced by periodicity conditions. The 'amplification factors', X ,

can then be determined as follows:

(i) Substitute, into the finite-difference equations usead to solve the differential

equation,
gix) = Ango exp (ik . x)

s LNy AR T I BT At
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where k 1is a real vector choseu to satisfy the periodicity conditions, and
i

a" (%)

(ii) Determine the amplification factors from the condition for the existence of

s the vector of unknowns at position x after the nth step.

a non-zero solution for w, .

von Neumann's criterion states that a necessary condition for stability (as defined in
Richtmyer and Mortonl. Chapter 3) is that all the amplification factors, X , must

satisfy
[x] <€ 1+ 0(h) for 0<h <1

where T 1is some upper bound on h , and h is the step length in the marching

direction, This stability criterion can be extended to the iterative methods for

solving elliptic partial differential equations with periodic boundary conditions, by
use of Jameson's time-dependent analogy (see, for instance, Ref 4). It then becomes

IA] <1 .

The application of the von Nevmann criterion will be illustrated by the following

e bt L oot o ko 0 bbb S s e

examplel, in which the boundary conditions are periodic:

2
solve Su Sy on 0Sx<1 and 0Kt
ot sz

a constant, u(0,t) = u(l,t) = 0 and u(x,0) = F(xX) . Let u? be the finite-

2
3
5
E|

with ¢

difference solution at x = jAx and t = nAt , take a central-difference approximation
.« s . . . n+ .

for Bzulexz ,» and use an explicit scheme (that is one in whi.h one unknown uj 1 is

P

expressed in terms of the knowm u?s). The finite-difference equations may then be

written

n+l n
. -1,
l « g (u? - 24" + 7 )

ae (ax’ P

giving the equations, for the amplification factors, A ,

o
+
I
et bt B S L b

- 1 1 -1
(A= . _o [elkAx + g ikAX _ 2]

At (Ax)z !
L
where k = 2m , with n any integer, to satisfy the periodicity condition. Hence ;;
A= 1 =225 90 - cos kaxl !
(ax)
and the von Neumann criterion gives 3
(a%) ]

as a necessary condition for stability.
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Under some circum:ctances the von Neumann condition is sufficient as well as neces-
sary for stability. In particular, for two-level schemes (that is achemes in which the
finite-difference equations relate values of the dependent variables at the (n + 1)th
step to values at the nth step, values of the dependent variables ‘at earlier steps not
occurring in the equations) with one dependent variable and any number of independent
variables, the von Neumann criterion is sufficient as well as necessary for stability.
For tie example given above equation (2-1) is thus a necessary and sufficient condition

to ensure stability,

In cases where the von Neumann criterion is necessary but not sufficient for
. . . . tas 1
stability, further criteria which ensure stability can often be found .,

Although it might anpear here that the von Neumann method has limited applicability,
particularly because of the restriction to periodic boundary conditions, in fact it has
much wider practical application. In section 2.4.2 the Godunov~Ryabenkii criterion is
described. This in effect provides an extension to the von Neumann treatment to cover
consideration of arbitrary boundary conditions, although in practice the extension is

often difficult to apply.

2.2 Matrix formulation of the finite-difference problem

The problem of finding the solution, ¢ , of a set of finite-difference equations
approximating a differential equation (ordinary or partial) can be expressed in the
form: .

find ¢ satisfying A¢ = B (2-2)

where B is independent of ¢ , but A may depend on ¢ . As an example consider

the numerical solution of

ad + 2bd + C¢ = f
Xx Xy yy
on a unit square, with Ax = Ay = |/N , a, b, ¢, f constants and values of ¢ given on
the boundary. Let the subscripts, i and j , refer to the coordinate directions, x
and y , respectively. Take the usual central-difference representations of oxx and

oyy and assume that if ¢ were known, °xy would be approximated by

3 L] ]
Oy (18%:38Y) 7y Cpunia T et g-1 T Yena Y %, (2-3)
where °ij = $(idx,jAy) .
The equation (2-2) takes the form

E F o ‘{’I = B (2-4)

T .

F E .

N F .

O\ 2
\ FOVE v
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: where each Wj is a vector of length (N - 1. The ith component of the vector W is
ol + (3 - N - lﬂ and is the estimate which is obtained for oij from the fxnite-
o difference approximation. B is a vector of length (N - 1)? with slements equal to
z £/n? plus (possibly) some contribution from the boundary. E and F are matrices of
3 order (N = 1) x (N - 1) with
% o - —zc\ |
z' \\i:;:ii\;:\\\\\\\a
‘ a -2a - 2
- and >. (2-5)

T T E
T

gl
]
o
S~
[ =4
(2]

‘e b/2
-b/2 " /

1

SR T TR B R T P
i

FT denotes the transpose of F , that is ng = F . The particular form of the

ji

L - matrix, A .(which is of order (N - 1)2 x (N - 1)2) is determined by the finite-

difference approximations used.

e

The matrix, A , has several features of interest. It is sparse, which means that

Gl
'

most of its entries are zero - there is no precise definir.on of sparse, but a good f

g

guide seems to be that a matrix is sparse if more than 90% of its entries are zero. It ]

is block tri~diagonal, and each non-zero block is tri-diagonal. Features of this nature

il s ot bkt Al A A s e

are generally observed with finite-difference equaticns obtained from partial differential

equations.

PEERY IV T3

2,3 Methods of solution

Congsider equation (2-2) again., For any given A this set of equations can be |

solved directly by Gaugsian elimination. Frequently some form of reordering of A before 5

carrying out the elimination will give a much faster scheme. This sort of scheme will l;
be must suitable when A 1is independent of ¢ (as will occur if the differential é
equation is linear), or if A 1is triangular (either upper or lower) with all elements j
on the leading diagonal independent of ¢ (as might occur if the differential equation

is hyperbolic or parabolic). 3

However, the equations can also be solved iteratively by writing A in the form

A = G-C




TR
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and solving

™! -« B+ ow" (2-6)

where wo is given, G is some easily invartible matrix and any % appearing in &
and C is replaced by the estimate w? of ¢, . If the scheme is stable in the

sense of all errors decaying suitably then w" will tend to ¢ as n+® ., An itera-
tive scheme of this sort will obviously be most suitable when A is dependent on ¢ ,

and equation (2-2) cannot be solved directly, as might occur if the differential equation
is elliptic and 'quasi-linear'. A quasi-linear differential equation is one in which the
highest derivatives appear linearly, but the coefficients of the highest derivatives are
functions of the dependent variable and lower-order derivatives of it,

It is of interest to note that approximating some second-order parabolic and
first-order hyperbolic quasi-linear partial differential equations hy certain 'marching'
finite~difference schemes can also give rise to equations of the form (2-"), where w"
is now the approximation to the solution at the nth step in the marching direction.

This is illustrated in the example described in subsection 2.4.2. Equation (2-2) now
takes the form

0

]
(9]
(2]

£

"

-~

2]

O {
////////’o
H
o o
T e eenan €
e oeeveese X

o
oo

2.4 Matrix method of determining stability

2.4,1 Preliminaries

It was indicated at the beginning of this section, that there are very few
theories concerning stability, when the umatrix, A , of equation (2-2) depends on the
sclution of the finite-difference equations. A local stability analysis is usually
carried out in such cases. Hence, from now on, the matrices A of equation (2-2), and

G and C of equation (2-6) will be assumed to be independent of the solution, ¢ , of
the finite difference equations.

If the 'error', e" » 18 now defined by

n n
e - ¢ -w

it can easily be seen that

Gen+l = Ce" (2=7)

and that w" will tend to ¢ if and only if e" tends to zero, as n tends to
infinity. Thus, it might be expected that, in princip'e at least, stability could be
digcussed in terms of the properties of the matrix G-IC .

180
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Before discussing some possible stability criteria it is nacesgary to define a few
terms and some notation:

:E; xix? » where x is a vector of length n , and * denotes complex conjugate.
1-

Hermitian A square matrix, A , is hermitian if Aji - A;j .

Diagonally dominant An n x n complex matrix, A , is diagonally dominant if

beo i

iAﬁl > z IAijl for all i .

Negative definite An hermitian n X n matrix, A , is negative definite if, for all
vectors x not identically zero, and of length n

n n

x*A,.x, < 0 ,
11]) )

il gcep b ettt o it i ki

i=] 1m]

Eigenvalue and corresponding eigenvector X is said to be an eigenvalue (also termed
latent root or characteristic root) of an n x n matrix A , if there exists a non-zero
vector e of length n such that

E:

L e s e 4

Ae = e
The vector e , which is determined to at most an arbitrary multiplicative constant, is %
termed the eigenvector corresponding to the eigenvalue, A , g
Orthogonal Two vectors, X and y , each of length n are orthogonal if j%
X.y = Xy, = o . ;3
i=] i
Spectral radius, p{A) The zpectral radius of an n X n complex matrix is p(A) where };
p(A) = max lkil

and {Ai} is the set of eigenvalues of A .

Spectral norm, lal  The spectral norm of an n X n complex matrix is lal

where [Al = max JYA;XFL
all x40

and x is a vector of length n .

f
|
]
L s
1€i<n i
]
1
|
|
1
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'2,4,2 Stability criteris

Three possible criteria will ' . described in this section and a discussion of them

follows in asction 2.4.3.

Clearly, if, in equation (2-7) |e®| +0 as n =+

o(c ) <1 (2-8)

In equation (2-6) this will ensure that errors eventually decay, so stability is achieved
in one of the senses of section |. For the rast of this Report condition (2~8) will be
termed ths first stability criterion. This criterion seems to be widely used - see,
for instance, Refs 5 and 6.

The most obvious shertcoming of this eriterion is that for parabolic and hyperbolic
equations it will exclude.the possibility of solutions which are growing exponentially
in the marching directiou. To include these, the stability criterion should be relaxed

to
p(clc) < 1+ 0Ch)

where h is the step length in the marching direction. However, stability, in any of
the senses given in section 1, is no longer necessarily achieved.
Examplesl’6’7 show further unsatisfactory features of the s.ability criterion

(2-8). This will be illustrated here with the examplel:

Su , ,3u <x< <
solve 3t + a % 0 on 0SS x 1 and O t ’

wiath a a positive constant, u(0,t) =0 and u(x,0) = F(x) . The true solution
is uw P(x - at) when x » at , and zero everywhere else. Take Ax = I/N , represent

du/ax by a backward difference, and use an explicit scheme. This gives

L B
At Ax \"j i1

where u? is the calcuiated value of u at x = jAx and t = nit . Let r = Ata/Ax ,

then

LS RN P (2-9)
h| =1 _

]

giving the matrix G as the identity and C as the N x N matrix

(g0
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1f r=3/2, p(G-'C) = | and so condition (2-8) is satisfied. However, f an
error initially has the form

e? = 1 \e , it is found that L -} e.e2 = (= l)z €
0 3 23)(- 1)
0 0 @)?
: s 0
and in general
of] = 0 i>q+ |
- (-;)q“i‘”mi“(‘!ci_be i<q+ .

For fixed i it can be shown that |egl has a maximum at ¢q = 2i - 2 , and that this

maximum is an increasing function of i . Hence

N=1 N=-1
q 1 3 (2N = 2)! .
';‘:'%' " (?) (‘i) N=-DIWN - DT °

which is asymptotic to, for large N ,

3N"le

(vN);

by Stirling's formula., This shows that stability is not achieved in the sense of the
effect of a rounding error being bourded as N increases, nor is it achieved in the
sense of any of the definitions given in Richtmyer and Mortonl. In numerical work the
scheme will become less and less satisfactory as Ax = 1/N becomes smaller and smaller,
while r is kept fixed. However, for small enough N , it may appear satisfactqry

because max |eiq|/e will not be very large, and errors increasing only slightly before

1,49
decaying may be acceptable.

Mathematically, the difficulties of errors becoming arbitrarily large before they
decay away, as the grid size decreases, seem to arise either through there being fewer
essentially distinct eigenvectors than eigenvalues of G-lc (as in the example just

discussed), or through the eigenvectors being nowhere near orthogona16’7.

To prevent components of any introduced error becoming arbitrarily large as the

grid size is decreased, one might, as suggested in Richtmyer and Mortonl, impose

i e
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N(G_IC)\"“ € gyome constant, K

(2-10)

independent of the integer, v , and.the grid size for all sufficiently small grid sizes.

v is any integer satisfying OShv < H , where H is some given constant, and h is

the step length in the marching direction, which satisfies 0 <h < T, 1 being some
suitable upper bound. This condition can be extended to iterative methods for solving
elliptic partial differential equations, by use of Jameson's time-dependent analogy (see,

for instance, Ref 4). It is the same as that given in equation (2-10), except that

v 1is now any positiv. integer.

Satisfyiné this constraint, which will be termed the second stability criterion

for the rest of this Report, seems to ensure stability in all the senses given in

section 1. However, for this constraint to be satisfactory in practice, the constant,

K , must not be too large, and the grid size must not be too small.

In the example discussed earlier in this section this stability criterion gives
0<r <1, which is the well-known Courant-Friedrichs-Lewy sriterion for the stability

of the iterative scheme.

I1f there is only one space~like independent variable it can be shown that, if the

second stability criterion is to be satisfied, it is necessary that the Godunov-Ryabenkii

criterion be satisfied. A statement of the Godunov-Ryabenkii criterion and a proof of

. . . . 1 .
its necessity can be found in Richtmyer and Morton . It is in two parts, one part

being a condition that looks very like a von Neumann criterion, Amplification factors,

XA , (local omes if necessary) are found by exactly the same procedure as described in

section 2.1. These must satisfy

lim [A] < 1
h-0

where h is the step length in the marching direction.

This bound on the sizes of the amplification factors is very similar to, but weaker

than, the bound imposed on them in section 2.1. By use of the time-dependent analogy

1

(see, for instance, Ref 4) this ' : comes

[A] < 1

for iterative methods used in solving elliptic partial differential equations.

This

bound on the sizes of the amplification factors is the same as that imposed on them in

gection 2.1.

In the example discussed earlier, equation (2-9) can be used to show that the

amplification factors, A , have the form

A a (1 = 1r) 4+ re_ikAx .

180
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Hence, if the Godunov-Ryabenkii criterion is to be satisfied
0 S r &1 .,

The second part of the Godunov-Ryabenkii criterion is concerned with the boundary
conditions, each boundary condition being treated in turn. The implementation of this
part of the criterion for the general case is discussed in Richtmyer and Mortonl. How-

ever the discussion can be much simplified if the following restrictions are imposed:
(i) The differential equation has constaant coefficients.
(ii) The differential equation has a scalar dependent variable.
(iii) The highest space derivative is at most second order,

(iv) A two~level difference scheme (this term is defined in section 2,1) is

adopted.
(v) There is at most one boundary condition at each boundary.
Attention here will thus be confined to this class of problem.

There must be two boundary conditions for a problem ir which the highest space
derivative is of order two and one for a problem in which the highest space derivative
is of order one - itis taken that this is true. For clarity it will be further assumed
that the problem has been formulated in terms of the equation satisfied by the errors
and the boundary conditions on them. Errors must satisfy homogeneous boundary conditions
(ie errors do not contribute anything to the boundary conditions), because the Godunov-
Ryabenkii criterion is only applicable to problems with linear boundary conditions.
If a particular boundary condition on the “ependent variable is homogeneous, errors

also satisfy this boundary conditionm,

If, when carrying out a von Neum2nn stability analysis on the equation describing
the behaviour of the errors, exp(ikAx) 1is replaced by u , an equation relating A and
i results. (To carry out the von Neumann stability analysis this equation must now be

solved with u = exp(ikAx) , for all possible values of kAx.) If the gubstitutions

e"(jax) = Awleg (2~11)
where e" is the error at the nth step after it is introduced and €0 is a non-zero
constant, are now made into the finite-difference equation modelling the boundary
condition on the error, at the boundary under consideration, another equation for A and
u results, These two equations can be solved simultaneously for A and u ; |u| need

not necessarily equal unity.

If the value of u , the dependent variable, is specified at the boundary, the error
must always be zero at the boundary, and so 1 must be zero, because e cannot be zero.
This is always stable. In cases when u 1is non-zero, e , given in equation (2-11) is
only acceptable (physically) if it decays away from *he boundary under consideration,

into the interior of the spacel. Hence at a lower boundary only solutions for A and u




14

with |u] €1 are acceptable, while at an upper boundary only solution3 with |u| >1
are acceptable, The boundary condition under consideration is said to be stable if

). , corresponding to an acceptable u , satisfies

lim 2] < 1
h+0

for marching problems, with h the step length in the marching direction, and
[A] <1

for elliptic problems, The second part of the Godunov-Ryabenkii criterion is satisfied

if all boundary conditions are stable.

It is often rather more difficult to ascertain whether this part of the Godunov-
Ryabenkii criterion is satisfied, than it is to ascertain whether the 'von Neumann-like'
part of the criterion is satisfied, However, in the example earlier in this sectionm,
the boundary condition at x = 0 cannot lead to any instabilities, because the dependent

variable is zero there.

As has already been commented the second stability criterion might not be
sufficiently strong. To avoid the possibility that the constant, ¥ , of equation (2-10)
might be too large in practice, one might impose what will, for the rest of this Renort,

be termed the third stability criterion,

Ig™'el < 1+ o(h) (2-12)

where h 1is the step length in the marching direct‘on (which is to be regarded as zero
when there is no marching direction). This, however, seems over-restrictive, because

it very rarely matters if an error does grow slightly before decaying.

2.4.3 Discussion of criteria

It should be noted that, if the third stability criterion (2-12) is satisfied,
then the other two are necesssrily satisfied because (2-12) = (2-10) = (2-8). On the
other hand, if the eigenvectors of G-]C are mutually orthogonal and there are as many
eigenvectors as there are rows of G—IC » then, if the first stability criterion (2-8)

is satisfied, the other two are necessarily satisfied. This is shown by proving
(2=-8) = (2-10) = (2-12)

under such circumstances.

For practical purposes what is desired is a necessary and sufficient condition for
stability (in some suitable sense) which is easily applied to any numerical scheme.
For most preblems it is very difficult to find p(G-lC) or “(G-4Cy" for all permissible
integers, Vv . For many problems with one space dimension it is also difficult to apply
the part of the Godunov-Ryabenkii criterion involving the boundary conditions. (The

Godunov-Ryabenkii criterion is only applicable to problems with one space-like independent
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variable.) Only an analysis of the form described in section 2.1, leading to a
'von Neumann-like' stability criterion is usually fairly straightforw:rd. It has so
far only been indicated that 'von Neumann-like' criteria are applicable under rather

restrictive conditions (see sections 2.1 and 2,4.2), However, it is widely acceptedl

;
{AE!‘
=
kY
2

|
3
bl
!

that criteria of this form are applicable to many problems not iacluded in the categories

described in sections 2.1 and 2.4.2., Tntuitively this 'feols right' because, away from

' ot

oo he2l v e A

the boundaries, such criteria give necessary conditions for local stability, and the

correspondence between local stability and global stability is usually closel. However,

as the Godunov-Ryabenkii criterion indicates, even if, in a von Neumann-like analysis
the amplification factors all have moduli less than unity, the scheme may still be
unsatisfactory in practice, because of the boundary conditions, This will be illustrated

in section 3.2. 1In contrast, in some cases where the amplification factors do not obey

=
3
3

a von Neumann-like criterion the numerical scheme may appear to be satisfactory. This
will arise if the grid is sufficiently coarse and p(G—lC)~< 1 . An example of this
will be given in section 3.1. In these circumstances the scheme will become less and

less satisfactory as the grid is refined.

As the only useful criterion that has been suggested (Ze¢ a von Neumann-like

criterion) is a necessary condition for stability, it might be of value to see if useful

criteria which are sufficient for stability can be found. As mentioned in section 2.1,

conditions which, with the von Neumann criterion, are sufficient for stability for

b na.lmuLL

schemes approximating pure initial value problems can be found in Richtmyer and Mortonl.
For problems involving boundary conditions and variable coefficients the most ugeful
method for finding sufficient conditions for stability, and incidentally for indicating
suitable numerical schemes, is probably the so-~called 'energy method'l. However the

application of the method usually seems to require much algebra, and often leads to

very complicated conditions which are far from necessary.

A suitable practical approach to obtaining stability might thus be to ensure that

the von Neumann-like criterion of section 2.4.2 is satisfied locally everywhere,

3 EXAMPLES

)

Here the ideas of section Z will be illustrated with two examples, In section 3.1
the representation of a mixed second derivative in -a second-order elliptic differential
equation will be discussed. In section 3.2 a second-order ordinary differential equation,

in which occur terms involving the first derivative, wili be considered. Suitable

iterative schemes for solving the finite~difference equations will be suggested,

I
.
¢
.‘
i
¢ 3
?.

3.1 Example | - mixXed second derivative

Consider the equation

ad + 2bd  +cP +db. = O
xx xy yy x
o
on a unit square with ¢ zero everywhere on the boundary and ac @ b“ ({e the equation
is elliptic). Without loss of generality take a to be positive. The only solution of
the equation is ¢ identically zero everywhere. Let the subscripts, i and j , refer

to the coordinate directions, x and y , respectively, and let Ax = Ay = 1|/N . Take
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the usual central difference representations of et ® and ¢_ . One possible

representation of the cross~derivative was given in equation (2-3). This representation

has a truncation error of

1 2 2 .
% I:(Ax) °xxxy + (Ay) oxyyy] + higher order terus.

Mi t:c:hell3 suggests

1

Oy libxiidy) = o [°i+1,j+| =0 ie T e, 4
+ ¢, . -9, . =9, . + 9, . if b>0 (3-1a)
i,] i-1,j i1 i=1,j-1
with Qij = ¢(iAx,jAy), which has a truncation error
(%) 2 AxA (Ay)?
a9 + 22X + g + higher order terms
6 XXXy 4 XXyy 6 Xyyy
and
. . o~ 1 - _
Oy (18%:38Y) = mregs 185 501 ™ Pmr, i1 T %45 Y %1y
+ - * 0 - 3 . Ld : i —]b
* ¢]'.+I,J q?].,] °J.H,J'-l * o1.,_]-!] if b<0 (3 )

with a similar truncation error, Mit:chell3 suggests this scheme so that the coefficients
of all the unknowns in the resulting finite-difference equations will be positive. He
therefore requires |b| < min{a,c) , in the case of zero d . While this sort of condi-
tion is necessary for some of the matrix theories of stability that have been deve10ped3’8,
it is not usually a necessary condition for stability and is of no use in the situation

b > min{a,c) . It is thus worthwhile exploring alternative representations of the

cross—derivative.

The third and last representation of the cross-derivative to be considered here
will be termed the 'inverse Mitchell' scheme, because it is the same as Mitchell's

scheme (given above in equations (3-1)), ‘except that the condition on b 1is inverted.

It is
. . 1
Qxy(zAx,_]Ay) LT v [0. e =0 -9

+ 9, ., ] if b>0 (3-2a)
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and
1
i 2 e N s s s PR
°xy(iAx'JAy) 2AxAy [ i+1,3+1 °i.J+l °1+l.3 * °1.J
- - 3 > -
AP E L A °i-|,j-|] if >0 (3-2b)
These three possible representations for the cross-derivative all lead to finite-
difference equations of the form
' A& = 0 (3-3)

where, as in section 2.2, ¢[i + (j = 1)(N = 1)] is the estimate of ¢ at x = iAx ,

y = jAy which is obtained from solving the finite difference equations and A has the
form given in equation (2-4), With the cross-derivative given by equation (2-1) E is
an (N - 1) x (N - 1) matrix with

kgt byt 8 G i gl et b e

E = - [2a+ 2 - a - d/2N \
-a + d/2N @)

O -a ~ d/2N

-a + d/2N T 2a + 2¢ }

and F is given in equation (2-5). With the cross-derivative as given in equations

(3-1)

E = -/2a-2b+ 2 -a + b - d/2N

and

F = -f=-c +Db -b

-c+b

Py . i T e A T A SRR B
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when b> 0 , and with the cross-derivatives as given in equations (3-2)
E = =~ /2a+ 2b + 2c -a =-b - d/2N

1-a~-b+d/2N 0

AN

NN ;

ot endh b L i bt Wb Akt st bl

and

WO ke helllid e bed

T T S I IR

=y

b -c~b

when b 20 . The corresponding matrices when b < 0 can easily be derived.

Equation (3-3) will be solved iteratively by a successive line over-relaxation

BT R T

Rt s A L

(SLOR) scheme, in which all values of ¢ on a line y = constant are updated at
the same time. At points before and on the line where ¢ 1is currently being updated -
there is a choice as to whether to use the values of ¢ from the current iteration, or 3
values of ¢ found during the previous iteration. The first derivative, @x » will be

calculated using values of ¢ found during the previous iteration, while the second

xx
iteration, whenever possible. For the mixed second derivative, ¢xy » values of ¢

derivatives, ¢ and oyy , Wwill be estimated using values of ¢ from the current

from the current iteration will be used on the line previous to the current one, while
on the current line various schemes, depending on the representation ol °xy ,» will be

investigated. These schemes are as follows:

R R T T

Scheme I oxy is given in equation (2-3)., No values of ¢ on the curcent line are L
used. .

Scheme I1 ¢xy is given in equations (3-1). The values of ¢ currentcly being calcu- .

lated are used everywhere on the current line.

Scheme III @xy is given in equations (3-2), The values of ¢ current.y being calcu-

lated are used everywhere on the current line.

Scheme IV oxy is given in equations (3-1). The value of ¢ currently being calculated

is used at the point at which the derivative is centred. Elsewhere on the current line

values of ¢ from the previous iteration are used. g
Scheme V Oxy is given in equations (3-2). The value of ¢ currently being é
calculated is used at the point at which the derivative is centred. Elsewhere on the é

current line values of ¢ from the previous iteration are used.
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Scheme VI oxy is given in equations (3~1). Values of ¢ from the previcus iteration
are used to approximate the third and fourth terms. Values of ¢ currently being
calculated are used in the fifth and sixth terms,

If d »~0 and the matrix, E , is determined from equation (2-4) and any one
of equations (2-3), (3-1) and (3-2) it is easily seen that A is hermitian and E is
negative definite. Then, if any of schemes I, II and III is employed it can be shown
that the scheme will be stable, in the sense of all errors eventually decaying, if the
relaxation fuctor, w , satisfies 0< w <2 and the corresponding matrix, A , is
negative definitea. This, however, seems cf little use, as this definition of stability

has already been shown to be of limited value (see section 2.4.2). Also d will often
not be zero.

A von Neumann type analysis can, however, be used to give some indications of
stability in the sense of all the definitions given in section 1, The amplification
factors, A , are as follows, where 0 = 2nk/N and ¥ = 272/N, k and £ being
integers satisfying 1SKk,2 €« N -1 :

Scheme I

2(w - 1)a(l = cos 8) + 2¢(w = 1) - wcew- -g— iw 8in 6 - bwewi gin ©
A= -

2a{l « cos 8) + 2¢c ~ wcew + bwewi sin 6

Scheme IT (b > 0)

2(w - 1)(a = bY(1 = cos 8) + 2c(w - 1) - weel - % iw sin 8 - buel¥(el® - 1)
A = -

2(a - b)() - cos 68) + 2¢ ~ wcew - bwew(e-l8 -1

Scheme III (b > 0)

2w=1)(a+b)(1l = cos 0) + 2¢c(w = 1) =~ wcei‘p - % iw sin 6 - bmeiw(l - e_ie) '

2(a + b)(1 - cos B8) + 2c - wcew + buueﬂw(ele - 1)

Scheme IV (b > 0)

2(w=-Na(l~cosb) +2(c-bB)(w=-1) - wcew-%iw 8inf + 2bw cos.e—bmew(e16 -1

2a(l - cos 0) + 2(c -~ b) - wee TV - bwe—w(e—ie -1

Scheme V. (b> 0)

2(w - 1)a(l - cos 6) +2¢(w~1) - mcew-% iw s8in J-2bwcos B - bwew(l - e_le)

2a(l - cos 68) + 2(¢c + b) - wce-w + bwe-w(ele -1)

Scheme VI (b> 0)

2(w - 1Da(l - cos 8) + 2c(w~- l)-wceiw-% iw sin ¢ - (w=1)b(} - eie)—bm(eie -1

2a(l - cos 8) + 2¢ - wce-w— b(l - e-le) + bwe_w(l - e-le)
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Case (1) a and c of same order of magnitude

T T R

The stability criterion |A| €1 gives

2 2 2
ET < 402 - w) (ac = b") Schemas I, II and III
N w(e - w)
2 2 2
d 4{c(2 = w) = 2b] “(ac - b°) ———
—_—_ =2 and {e2 -w =20 2 0
N° weled = w - 4b)
Scheme IV (b 2 0)
2 ? 2
- 4lc(2 - w) + 2b] “(ac - b°) ,
) < wele(s = w) + 4b] b 20 Scheme V
2 2 2
d° _4db(2 - w) o 42 -w’(ac = b2 :
Nz RO = 0) < Sl b0 Scheme VI .

The lack of sywmetry in scheme VI seems to arise from the lack of symmetry in the
representation of the cross-derivative, for example through using an old value for ¢i o,
while using the current value of ¢i-!,j in equation (3-1a). Scheme V is less restric-
tive than Schemes I, II and III, but Scheme IV is more restrictive than all these schemes.

All the schemes were tested numerically. ¢ was initially set to 100.0 everywhere,
and the scheme was said to have converged at the nth iteration, where n is the smallest

integer satisfying

max |9} ~ ¢{‘:'| < 1077
k

where fbn is the vector giving the estimates of ¢ after the nth iteration. The results

obtained when a = ¢ = 1 are shown in Tabie 1 ,

For the case b = 0.9 and d = 0 there seems -0 be little to choose between
Schemes I, II and III, but the other schemes avre noticesbly worse. .For Scheme IV the
condition ¢(2 ~ w) >2b is violated and so the iterative scheme is divergent. When
b is 0.45 it is predicted that Scheme IV will be stable if and only if w <l.1. In
fact when N is 10 and w = .11 the scheme is convergent, although when N is
increased to 50, with w s8till 1.1]1 the scheme is divergent. This illustrates the point
that schemes which may appear satisfactory for large step lengths become less and less

gatisfactory as the step length decreases.

Attention was then turned to d non-zero. The above analysis suggests that when

b=0.9, a=c=1 and w= }.5
ld/N] < 0.225 Scheme I
|d/N] < 0,439 Scheme V

for stability. Although, as expected, Scheme V permits larger values of Id/Nl than

Scheme I the results given in the table are clearly in need of some explanation!
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To try to do 8o the case a=¢=ww! and b =0 , with N = 50 was investigated.

The above analysis suggests

la/N] < 1015
is a necessary condition for sﬁabi?ity in all the senses of section |. If, however,

stability is defined as occurring if all errors eventually decay, then stability will
occur if

max |y| < 1
8,t
where vy satisfies
2 &
2¢ = |¥° - ——5 «cos e - /? cos ¢ = O
4N

with 86 =« 7g/N and ¢ = nt/N, s and t being positive integers satisfying
1< s, t SN-1., As N-+>» this gives

la/n] < 1.82,

For d/N just greater than 1.15 the iterative scheme works well, but as d/N approaches

1.82 the initial ri=e in max|¢: -¢:-]| is so large that it becomes unacceptable, and
k

also causes a large increase in the number of iterations required. Just where the
iterative scheme becomes unacceptatle is not easy to define, but it is clearly here
being ultra-cautious to require |d/N| < 1.15 , as the intermediate results are not of

interest, although allowing it to get too near 1.82 is unacceptable.

Case (ii) An example when a and c are not of the same order of megnitude

It will be assumed that a92 > c (= afd Db Dbvecause b2 < ac)
b € (d/N)
c <€ (d8/N)

and thzt there is on upper limii on the size of N . This situation can arise in the
soluti n of the full potential equations of fluid motion round very highly swept
wings using a non-orthogonal grid, in some regions of which the angles between cocrdinate

lines of different families are small.

A von Neumann-type analysis gives approximately,

l[d] < 2a8 tan% ;“’ Schemes I, II, IIT and VI (3-4)
4
|d| < zaN tan %/2 —2 i+ [b] Scheme V (3-5)
w 2T
a tan §~(2 - w)

for stability, in all the senses of section |. No stability criterion is possible for

Scheme IV for the following reasun. The SLOR method requires the solution of equations
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of the form

™ = k (3~6)

where T is the (N = 1) x (N - 1) matrix of form

by ¢
o
8 b 9
\\cn-‘
o b
*n n
with a, =¢c;, ~-a and bi = 2(1 = |b] + @),
This is done by setting
A
C] Ci
W - o=, w, = -
bby by = 8595
\ (3-7)
g = El g, = ki =88
, .
1 bl i bi aw, ]
the solution being obtained from
R ST I S S & T 3-8

As a> |b| >c >0, there is nothing to prevent Imil becoming very large occasionally.
If Iwil is very large : effect of rounding errors will not be negligible and the
scheme will be unstable, A sufficient condition to prevent any SLOR scheme being unstable
in this way is to require the matrix, T , to be diagonally dominant, for this ensures

lwil <1 for alli .

The results obtained when a = 104 » b=90 and ¢ = 1 are shown in Table 2.

Scheme IV appears satisfactory when N = 10 and d = 0 , but was found to be divergent
when N = 50 and d = 0, There is little to choose between Schemes I, II, III and VI

but Scheme V is definitely slightly slower (though not so markedly as in the case
a=c=1, b=0,9 and d = 0).

The symmetrical nature of Schemes I, II and III and the unsymmetrical nature of

Scheme VI, with respect to the sign of d , are illustrated, Idl arbitrarily being
chosen as 5.5 x 104 + The criteria (3-4) and (3-5) suggest that, for stability,
4

wher |d| = 5.5 x 107, in all the senses of section 1,

w £ 1.13 ‘Schemes I, II, III and VI
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Scheme V .

This implies that all values of w are permissible with Scheme V - the numerical results
support this. However, the restriction on the relaxation factor,  , does not seem to
be quite correct for the other schemes.

To try to explain this, it should first be observed that the criterion ensuring
that all errors eventually decay is also given, approximately, by equation (3-4) for
Schemes I, II, TII and VI. This suggests that as the relaxation factor, w , approaches
its theoretical upper bound the constant, «., of the second stability criteriom,
equation (2-10), becomes too large. This permits an unacceptably large initial growth
of errors, although, for fixed w , no error can become arbitrarily large. Thus the
results when Idl = 5,5 x 104 illustrate the possibly unsatisfactory nature of the
second stabiljty criterion. Once again, just where the iterative scheme becomes
unsatisfactory ie diifficult to define.

For a larger value of d - a value of 1 x 105 was taken - with Scheme V, the
criterion (3-5) implies, approximately
w S 1,21

for stability in all the senses of section 1. However, if it is merely required, for

stability, that all errors should eventually decay, the stability criterion may be

Sa[:a sinz %;- + ﬂ
< 5 |

a?/n?

relaxed to, approximately

W

indicating that all values of the relaxation factor, w , will be permissible. In the
numerical work it was found that values of w somewhat greater than 1,21 were
acceptable, but as ® increased the initial rise in

n n-1
max|¢ - ¢ |

k k

k

is so large that the scheme becomes unacceptable. Just where the iterative scheme
becomes unsatisfactory is difficult to define. However, as the intermediate results are

not of interest, it is clearly too cautious to require w < 1.21 , although allowing it
to get too large is ungatisfactory.

Discussion

The results of this section have illustrated many of the points made in section 2,
concerning possible stability criteria, A von Neumann-type stability analysis has been
shown to be of considerable use - although it has shortcomings, some of which have been
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{1lustrated. 1In most of the sectior the von Neumann criterion has been seen to be
unnecessarily stringant, although in one case it was not quite stringent enough.

The results also suggest ways in which mixed partial derivatives should be handled
in second-order elliptic partial differential equations when SLOR is being used to
sol,e the finite~difference equations. Concerning the number of iterations required, and
regions of stability, there i{s little to choose between Schemes I, II and III. However,
the calculations for Scheme I will take slightly less time than those for Schemes II and
III, Schemes V and VI require more iterations than Scheme I, but Scheme V is stable in
circumstances whare Schemes I, IT and III are unstable. The region of stability of
Scheme 1V is very much less than the region of stability of Schemes I, Il and III, so
Scheme IV is of relatively little use., The region of stability of Scheme VI is about
the same as the regions of stability of Schemes I, II and III, so Scheme VI is worse
than Scheme I, Thus it is recommended that Scheme I should be used whenever possible,
but if Scheme I is unstable Scheme V should be tried.

3,2 Example 2 -~ firat derivative

In this example the manner in which instabilities can arise from a boundary
condition will be considered. A suitable method for handling some of the first
derivative terms which arise in a second-order differential equation will also be

indicated.

In the solution of a second-order partial dif erential equation there may be

regions in which the equation reduces to, essentia.ly,

LA 0 (3-9)
with homogeneous boundary conditions. This will arise through either the coefficients
of the other derivatives being small, or through derivatives in directions other than
the x direction being small - as can happen in the solution of the full potential
equations of fluid motion round very highly swept wings when using a non-orthogonal
grid. In such a situation, the manner in which the boundary conditions can cause

instabilities is illustrated by the following example: solve (3-9) on {0,1) with
¢ = 0 at x=0, ¢ = pd at x=1, p>1 , (3~10)
Take the usual central difference representations of ox and °xx . Let Ax = I/N

and let the subscript i refer to the coordinate direction, x . The finite difference

equations may be written in the form:

Ab = [2 -1 ¢, \= 0 (3-11)
O

-1 N
2
\\ |
-1 2 -1 ¢

N-1
© -2 2 - 2] \s
N/ \%n

where °i is the estimated value of ¢(i/N) .
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Several schemes will be considered to solve this squation, They are all of the

form:
find v™*! from ™! = o" (3-12)

where H -G = A, and apply over--elaxation.

Schame I Here the second derivative will be estimated from the values of ¢ currently
being calculated, Hence H is the same as A of equation (3-11) and G = 0 .

Scheme II Even when equation (3-9) is a good appruximation to the full equation, the full
equation itself may be much more complex. In such circumstances it is quite likely that
some of the first derivative term will be evaluated using values of ¢ currently being
calculated while the rest of the first derivative will be estimated using values of ¢
from the previous iteration. This is best understood by writing equation {3-9) as

+ -
Qxx gox 8°x

where |g/2N| is not necessarily small.

Terms on the left-hand side are to be esvimated using the values of ¢ currently being
calculated, while the term on the right~hand side is to be fouud using values of ¢

from the previous iteration. H is now

-1 g/2N

2 - () + g/2N) 2p/N

and G 1is

/0 -g/2N

- \ @)
\ \

g/ 2N 0 - g/2N
O 6 e 2
N N

081

The method of matrix inversion given in equations (3-6), (3-7) and (3-8) will be
used to find yn*l in equation (3-12). To ensure that this is stable, |g| < 2N =this

engures that, with the possible exception of the last row, H is diagonally dominant.
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Scheme III If |g| > 2N Scheme II will not be satisfactory. However, now write

equation (3-9) in the form
I N(g = 2N)¢ = g%, - N(g - 2N)¢

and evaluaic terms on the left-hand side using the values of ¢ currently being calcu-~

lated, but terms on the right-hand side using the values of ¢ found during the previous
iteration. Then

H = g/N -1 - gl/ZN

sttt s

PR T

-1+ g/2N

L

it el b, o G

P A AT A

-1+ g/2N g/N -1 -g/2N 4
-2 g/N = (1 + g/2N) 2p/N 3
S and G = g/N - 2 - g/2N
i O
- g/2N
- O
; g/2N g/N - 2 - g/2N
0 g/N - 2 - g/2N 2p/N .

If g > 2N the method given in equations (3-6), (3-7) and (3-8) for finding yn+] i |3
equation (3-12) is stable, because H

is diagonally dominant when its last row is
ignored.

TR I

The stability of the three schemes will now be considered.

A von-Neumann analysis
gives the following equations for the a.rlification factors, A :

St dii,

Scheme I

w-1D%0+uw-1) =0 (3-13)

Scheme II

IR ordeicr s Hoabs™ oot L

A o= ] - (u = Do
(W=1+H (u+1)

180
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Scheme III

(u - l)zw (3-15)
(u2+l)+§8ﬁ-(u2-2u-l)

A= 1=
where |u| = 1,
In none of these schemes can A]XI be greater than unity for any permitted value of u ,
so the von-Neumann stability criterion is satisfied.

The boundary condition at x = Q trivially satisfies the Godunov-Ryabenkii
criterion., As the boundary condition at x = 1 is being imposed implicitly the finite-

difference equation modelling this boundary condition is independent of A . 1t is’

2 2
o~ L

For modes which decay away from the boundary |u| > 1, hence the only solution it is
necessary to consider is
2
ﬁ=R+ L+]
N N2

which is real and greater than unity. Substituting this value of u into equation (3-13)
it is found that A = 1 - w and so |A] <1 , Thus the first scheme satisfies the

Godunov-Ryabenkii criterion. As 1 >1 and 0Suw<2

0 < (u - Do <2
W= +F @+

and so, from equation (3-14), Scheme II also satisfies the Godunov-Ryabenkii criterion.

However, in equation (3-15), |A] will exceed unity if

z-zﬂﬁ(ﬁz—zﬁ-l)+z(ﬁ2+1) < w - D2

which, for large g/2N , gives, approximately i <1 + V2 which implies that p/N <1 ,

The problem given in equations (3-9) and (3-10) was solved numerically iu the
case N = 50 , with a relaxation factor of 1.6. In Scheme II g was taken to be 100 and
in Scheme III 5000, The results are showua in Table 3, convergence being defined as in

section 3.1, They are in good agreement with the above theory.

Discussion
The results of this section have illustrated some of the points made in section 2,
about possible stability criteria, As the von Neumann criterion totally ignores the

boundary conditions it is possible that even if tlie von Neumann criterion is satisfied
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the scheme may still be unstable as a result of the particular boundary conditions
used,

The results also suggest ways in which first derivatives should be handled in
second order partial differential equations. It seems safest always to use values of
the dependent variable from the previous iteration. If this is not dome, too much of
the first derivative may be evaluated using the current values of ¢ (Scheme II is
unsatisfactory if |g| > 2N). 1If this is avoided (as in Scheme III) the boundary
conditions may introduce instabilities.

4 CONCLUSIONS

The question of the stability of iterative schemes has been discussed with the
aid of numerical examples. It has been shown that there is in general no satisfactory
theoretical definition of stability., This necessarily means that in general there can
be no satisfactory eriterion for stability.

In many schemes linear equations of the form Tx = k must be solved. The first
requirement for stability is that the method employed to solve these equations must be
stable. The usual method, if T is tridiajonal, of solving these equations, is given in
equations (3-6), (3~7) and (3-8)., This method is stable if T is diagonally dominant.
However, the results of section 3.2 show that T being diagonally dominant is not
always necessary,

If a stable method of solving equations of the form Tx = k is used, a possible
fairly simple criterion for stability, is that of von Neuma;n. The examples illustrate
that this criterion can be unnecessarily severe for some problems, and not gufficiently
severe for others.

The first example, concerned with the representation of a mixed second derivative
(section 3.1), shows that if, in practice, there is a lower bound on the size of the
step length taken then the criterion may be too severe. However, in this example, it
was only the precise borderlines between practical stability and insctability that were

incorrectly predicted, all relative trends within and between schemes being correctly
predicted.

The second example, concerned with a first derivative (section 3.2), shows that
instabilities may arise through the boundary conditions, so that the criterion (which
ignores the boundary conditions) may not be severe enough. Thus the criterion indicates

that stability may be obtained if the boundary conditions are suitable. Ag it ignores

the boundary conditions it cannot tell which boundary conditions will give stability, and
which not.

Thus, while the von-Neumann criterion may be of considerable help in choosing a

suitable numerical scheme, it must be applied with great care and its shortcomings kept
in mind.

The examples of section 3 suggest how mixed and first detivatives should be handled

in SLOR (successive line over-relaxation) schemes. If the mixed derivative is required

at the point x = iAx , § = jAy then the values of the variable at the points
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x= (it 1)Ax, y= (j* 1)Ay should be used if possible. However, if stability
cannot be obtained with this scheme, a more complex one (Scheme V of section 3.1) may
give stability, When evaluation of a first derivative is required, care should be taken
if some first derivative terms, on the line currently being updated, are evaluated using

values of ¢ currently being calculated, while others are evaluated using values of ¢

from the previous iteration. Stability ir more likely to be obtained if first derivatives f
are always estimated using values of ¢ from the previous iteratioms. z
3
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: Table |
. Number of iterations required to solve Ot bezy + ny tde, = 0 E
: Relaxs.ion factor Number of 1
3 N ’
: b d Scheme w iterations E
E 10 0.9 0 1 1.45 (optimum) 3
4 " " " 11 1.46 (optimum) : 3
i n " " 111 , 1.45 (optimum) 30 g
% 1" :
- " " v 1.46 D é
1 " " " v 1.54 (opt:imum) 158 ‘:
;’; " " " " 1.45 175 %
" )y " VI 1.45 S w < 1,60 70-73 3
3 7 " 0.45 " Iv 1.10 157 E
; . ;
_ " " " 1.11 182 3
i:t " " 11 " l . 20 D —‘a‘é
: 50 [1] 1" " 1 . l 1 " g
10 0.9 6.0 I 1.5 218 '
L1} " 7' 5 1] " D , —§
" " " v n 9] =
50 0 55.0 1.0 130 .
" " 60.0 o " 145 ;
' |
" " 70.0 o "t 203 5 i
1 n 80.0 H " 363 2
3 | :
" » 85.0 g " 617 3
o
" " 90.0 ! " 2355 ¥
g |
" " 95.0 ™ " D ]
%

180

Key: D denotes divergence
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Table 2
Number of iterations required to solve IOAO +906 +¢ +d¢. = O
xX xy vy x
N d Scheme Relaxation factor, pumbe{ of
w i1terations

10 0 I 1.00 (optimum) 6
”" " II " " "

" " III 11} " 11

" " Iv " l 5
50 " " " D 3
10 " \ 1.08 (optimum) 10
" " VI 1.00 7
50 +5.5 x 10° I 1.05 c
" " 11 I .06 D
" u 11 1.05 C

" " " 1.06 D

" " III " C

1" " " l .07 D

" " VI l R l2 C

" " " ] . ] 3 D

" " \ 1 € < 1,95 C
" -5.5 x 10° I 1.05 "

" " I 1.06 D

" " II 1.05 C

" " " l . 06 D

”" " III 1" C

1" " " ‘ . 07 D

" " Vi 0.98 C

" " " 0. 99 D

" " \' 1 <1 <1,95 C

" i x 10° " 1.71 "

" 1" " , . 72 D

Key: D denotes divergence

C denotes convergence, but case not run to full convergence
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Table 3

Number of iterations required to solve 0xx =0

with ¢ =0 at x =0 and ox-po at x = |

Number of
P Scheme iterations
2572 I 43
" II c
" 111 D
45 II C
" ITI D
51 II c
" II1 c

Key: D denotes divergence

C denotes convergence, but case
not run to full convergence
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